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1 Introduction

In this note, we’ll take a look at ontologies, specifically biological ontologies. An ontology is
a formal representation of categories, items, and relations using a controlled vocabulary. For
example, if we are interested in genes related to terpene biosynthesis (an organic compound
with a strong odor), one way to compile a list of genes would be to search all previous
publications for genes involved in the pathway. But sometimes naming conventions can
differ, so we have to try multiple variants of the same search term. Also, once we get the
names of genes, we need to do more searching to find the relevant sequences!

An ontology addresses this problem by assigning this category a standard name (“terpenoid
biosynthetic process”). Then we can search for all genes related to this standard search term
and find all the genes of interest!

2 Ontologies

There are a few different ontologies in biology. An important one is the Gene Ontology,
which describes genes, gene function, and biological processes using GO terms. Other
ontologies exist for biological fields like disease, anatomy, biochemistry, etc.

2.1 Gene Ontology

The Gene Ontology (GO) contains ~ 50,000 terms, split into three main categories. Molec-
ular function terms describe tasks or activities performed by a gene product, for example
“catalysis” or “receptor binding”. Biological process terms describe broader processes like
“mitosis” or “DNA replication”. Lastly, cellular component terms describes a location
like “cytoplasm” or “telomere” which is related to a gene.

From the description of the three main cateogries, it is clear that a given gene can be as-
sociated with multiple GO terms across the ontology. For example, a single gene can have



multiple functions, or a single function involved in multiple biological processes, acting in
various cellular components.

2.2 Ontology relationships

GO terms can be very broad (“biosynthetic process”) to very specific (“monoterpenoid
biosynthetic process”), and so relationships between terms naturally arise. The nature of
these relationships is in and of itself another ontology (OBO relations ontology, e.g. “is_a”,
“part_of”, etc.) The relationships between terms can be modeled by a Directed Acyclic
Graph (DAG).

3 Term Enrichment Analysis

Suppose we run an RNA-seq experiment and collect a list of genes which we find are expressed
in a tissue of interest. We can annotate this list of expressed genes with GO terms. One
question we can ask is if a GO term is enriched, or over represented in this list of genes.

3.1 Hypergeometric test

A hypergeometric distribution can be used to answer this question. Assume there are
N genes total in the genome, of which m genes are annotated with a specific GO term Y.
In our experiment, we find n genes, of which k are annotated with GO term Y.
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Figure 1: Venn diagram of a hypothetical GO term enrichment scenario

What is the probability that these k£ genes are annotated? We can use the hypergeometric
distribution to find this probability and evaluate if this result is significant:
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Recall that the binomial coefficient (g) represents the number of ways to choose a subset
B items from a set of A items.

The first term (’,Z) represents the number of ways to choose k genes from the set of genes with
GO term Y. Next, (]X:Zl) represents the number of combinations to choose the remaining
n — k genes from the set of genes that are NOT annotated with GO term Y. Lastly, we
normalize the probability by the number of ways to select the n genes in our list from the
total number of genes N.

Lastly, we can find the probability of k or more genes annotated with GO term Y, P(X > k),
by integrating over the tail of the distribution. This probability is the p-value for the one-
tailed Fisher’s Exact Test.

3.2 Multiple Test correction

After running a Fisher’s exact test, assume we get a p-value of 0.001. We can interpret this
value as the probability that this result occurred by chance. What if we run this statistical
test on 1,000 GO terms? Then if this result occurs by chance with probability p = 0.001,
after 1,000 tests, we can expect that one of the test results happened by chance!

To correct for running multiple tests, we can use the Siddk correction. When running
many tests, we want to find the probability that at least one of the tests is significant:

P(at least 1 test significant)

1 — P(none significant)
1—(1=p)"
where f is the threshold for significance for each test, and n is the number of tests run. 1 — 3
is the probability that a result was not by chance, and thus (1 — )" is the probability that

all n results are not by chance. We can set a threshold for this probability at «, and solving
for 3, we get: .

F=1-(-a)
Thus if we want an overall significance of a = 0.05 (probability of at least 1 significant test
is 0.05), then we need to set a significance threshold 8 = 1 — (0.95)x for cach individual

test. Note: this correction is conservative, since it assumes each test is independent (not
necessarily true, since GO terms are related).

3.3 Binomial Test

Another similar approach (Bejerano et al, 2010) uses the binomial distribution (see the note
on Probability). Assume again that of n expressed genes, k are annotated with term Y.
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Now assume that a proportion py of the genome is annotated with Y. We get the following
probability:
n

P(X = k)= (k)p’w )t

Again, we can take the sum over the tail of the binomial distribution to find the probability
P(X > k).

This binomial test represents a scenario where we can select items from the set of gene
annotated with term Y with replacement. This differs from the hypergeometric test, where
we sample from the set of genes without replacement.

3.4 Bayesian term enrichment
The previous statistical tests are frequentist significance tests. Another method for

analyzing term enrichment uses Bayesian techniques, specifically building a Bayes net that
models the set of terms that best explain the activated gene set.
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Figure 2: A Bayes net to model term enrichment

Figure 2 shows a type of Bayes net, where T} represents GO term j, H; represents the hidden
state of gene i and O; the observed state. Since we assume that gene activation is noisy,
i.e there is a probability « of a false positive and [ of a false negative, the true state of
activation is modeled by the hidden state (which we can only infer from the observation).
Lastly in order to complete the model, we define 7, the prior probability of each term being
activated.

Often the Bayes net is used in an MCMC sampler, which iteratively makes changes to the
states of the graph, mostly towards more likely states, but sometimes to less likely ones as
well. Some “moves” in this type of network include: activating/deactivating a random term,
swapping a term with a random or related term, or randomly sampling all terms. After
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many iterations, we can find the most likely set of activated terms given a set of observed
genes (see note on Probability and RNA folding for Bayes nets and MCMC sampling).

4 Summary

Ontologies can create a standard set of terms to integrate research across the field of biol-
ogy. They can be useful in bioinformatics to assign functional terms to sequenced genes,
analyze the relationships between biological processes, and determine if broader processes
or pathways are represented by a set of genes. Lastly, this task of term enrichment can be
approached with various probabilistic methods like frequentist and Bayesian statistics.



