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1 Introduction

In previous notes, we encountered models like finite state machines and HMMs, which pro-
vide a set of states that can be traversed. These models fall uder a broader category of
abstract machines called automata. These models are also closely related to the concept of
grammars, which are used in computer science and linguistics to describe syntactic struc-
ture. In this note, we will discuss grammars and automata, and how they are related to the
many algorithms and models we’ve previously discussed.

2 Grammars

A grammar is a system or set of rules to generate a string of a particular pattern. One type
we are all familiar with is the grammar of a language, which dictates the certain patterns
that are allowed (adjective before noun, direct object after transitive verb, etc). But this
idea can extend to other areas, for example music, graphics, and of course bioinformatics.

2.1 Terminology

First some terms to be familiar with: terminal symbols and nonterminal symbols
represent the elements of the grammar rules, called production rules. Each production
rule is of the form LHS — RHS, representing a transformation from the left-hand side
of the rule (LHS) to the right hand side (RHS). These rules can be repeatedly applied on
nonterminal symbols, until only terminal symbols remain. For example, the following is a
grammar for RNA structure:

Non-terminal symbols = {S}

Terminal symbols = {A,C,G, U, ¢}



S — SAor AS

S —SCorCS

S — SGor GS

S—=SUorUS
S — ASU
S —USA
S — GSC
S — CSG
S —SS

S —e€

Rules:

In this grammar, the rules represent unpaired and paired bases, and the terminal symbol e
represents allows for sequence termination. Figure 1 shows how these rules can be used to
generate a structure.
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Figure 1: Different derivations leading to the same structure

2.2 Chomsky hierarchy

The Chomsky hierarchy is a classification of different types of grammars, which differ in the
allowable production rules.

2.2.1 Regular grammars

Regular grammars are the lowest level type of grammar in the hierarchy, and thus the most
constrained in the types of production rules. In these grammars, two types of rules are



allowed:
A—= zB

A— ¢

where A and B are nonterminals and z is any terminal symbol (and € is an empty string).
These grammars can define strings of various items (terminal symbols), which is useful
in many scenarios. One common usage of regular grammars is in regular expressions
(regex), where a query string pattern can be used to search in large strings. For ex-
ample, if we are searching for a sequence motif of 6 Cs, followed by a variable-length
TATA repeat region, followed by the motif ATGG and variable region between 10 and
20nt, lastly ending with a nonzero-length stretch of Ts, we could define the regular expres-
sion: “C{6}(TATA)+ATGG.{10,20}T+". Notice this expression has a series of states (e.g.
TATA repeat, variable region), that are in series.

How would we search for a pattern from a regular grammar (like a regex string) in a large
text (like a genome)? We could first scan for the first state in the pattern, and once we find
a match, check if the subsequent states match. This is similar to traversing a finite state
machine! In fact, regular grammars are equivalent to finite state machines.
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Figure 2: Regular grammars can be represented as FSMs

This is one aspect of a broader connection between grammars and automata, of which a
finite state machine is one example. These automata grow more complex with more complex
grammars, and often can be used as parser algorithms for a string generated by a corre-
sponding grammar. For example, a finite state machine can be used to parse many types
of data which follow a regular grammar (see the note on biological filetypes and pairwise
alignment).

2.2.2 Context-free grammars

The next level above regular grammars are context-free grammars. These grammars
allow any set of symbols (terminal and nonterminal) on the right hand side of production
rules, but only nonterminal symbols on the left, e.g. S — ASU in the above RNA structure
grammar. These grammars can represent nested or tree structures, like RNA foldback



structures.

The corresponding automaton for context-free grammars is a finite state machine with a
pushdown stack. Recall that pushdown stacks can be used to parse RNA foldback structures
and nested base pairing.

2.2.3 Context-sensitive and unrestricted grammars

The last two types of grammars are context-sensitive and unrestricted grammars.
Context-sensitive grammars allow nonterminal symbols on either side of a production rules,
and can model more complex phenomena like pseudoknot structures in RNA.

Unrestricted grammars allow any production rules, and can thus model any patterns or
structures. This is the highest level of the grammar hierarchy, and thus all grammars are
unrestricted grammars. Both unrestricted and context-sensitive grammars are equivalent
to Turing machines, which are a type of abstract automata that reads a rolling string of
symbols, and manipulates them based on assigned rules.

2.3 Tree-adjoining grammars

Tree-adjoining grammars define rules to manipulate parse trees as well, rather than just
the string itself. In the grammar hierarchy, they are more complex than context-free gram-
mars, but less complex than context-sensitive grammars. These grammars can be used to
model pseudoknot structures in RNA, or direct repeats (repeat sequences which may have
intervening sequences).

3 Automata

We’ve seen how there is a fundamental connection between grammars and automata, where
each type of grammar corresponds to an equivalent automaton. Often times, an automaton
can be used as a parser for the equivalent grammar. One example which have seen is a finite
state machine parsing a regular grammar.

Table 1: Grammars and equivalent automata

Grammar Automata
Unrestricted Turing machine
Context-sensitive Linear-bounded Turing machine
Context-free Finite-state machine w/ pushdown stack
Regular Finite-state machine



One detail to note: just as grammars form a hierarchy, so do the corresponding automata.

Over the course, we have discussed a few different algorithms for problems like sequence
alignment, RNA folding prediction, and gene annotation. But these algorithms are also
connected to grammars!

Table 2: Grammars in bioinformatic algorithms

Algorithm/Model Grammar
HMM (profile HMMs, phylogenetic HMMs, etc.) Regular
Needleman-Wunsch, Smith-Waterman, Gotoh Regular (pair grammar)
Nussinov, McCaskill, Zuker Context-free
RNA folding w/ pseudoknots Tree-adjoining

Table 2 summarizes how algorithms and models we’ve covered in previous notes are connected
to formal grammars (and thus to automata as well).

In the case of dynamic alignment algorithms for pairwise alignment, we can model the
algorithms with a pair grammar. These grammars (and automata) have two output tapes,
which in the case of alignment, records the sequences and gaps. Pair grammars also appear
in HMMs, where a pair HMM emits pairs of observable outputs.

4 Summary

Grammars and automata are closely related topics that form a framework in which to un-
derstand algorithms and models for strings (like biological sequences). Automata like finite
state machines and HMMs define an underlying regular grammar which dictates the se-
quences being modeled. Context-free grammars represent stacked or nested structures like
RNA sequences or phylogenetic trees, and thus algorithms like Nussinov or tree-building
algorithms follow an underlying context-free grammar structure. Understanding these con-
nections between automata, algorithms, and grammars allows us to develop better models
and algorithms in computer science and bioinformatics.



