BioE 131: Intro to Computational Biology Fall 2020

Multiple Alignment

Professor: Ian Holmes

Notes written by Vikram Shivakumar

1 Introduction

In the last note, we discussed pairwise alignment, aligning two sequences together by resolv-
ing gaps and substitutions using a few dynamic programming algorithms. However, often
we would like to align more than two sequences together! For example, we have sequenced a
particular gene from 10 species in the Citrus family, and we want to build an alignment of
all 10 sequences so we can construct a phylogeny of the species based on this gene. In this
note, we’ll see that the dynamic programming algorithms from pairwise alignment are com-
putationally expensive for tasks like these, but we will explore a few ways of approximating
the multiple alignments (MSA).

2 Why not use Dynamic Programming?

Dynamic Programming is often the efficient solution to many problems, many times yielding
a polynomial runtime complextiy (i.e. O(N?) or (O(N?))). In the case of a pairwise align-
ment, in all the DP algorithms we have covered, the runtime complexity is O(L?), where L
is the length of the two sequences. But what if we want to align three sequences together?

Now, instead of a 2D DP matrix with one sequence on each axis, we will need a 3D matrix to
include all three sequences of interest! Naturally the memory and runtime complexity of the
alignment algorithm becomes O(L?), since there are now L3 cells to calculate and store in
the DP matrix. We can then generalize this to N sequences of length L, where the runtime
and memory complexity of a DP algorithm becomes O(L").

To understand why a runtime of O(L") is infeasible, let’s look at our example of aligning
10 genes. Assuming each gene is 200bp, and each cell in the DP matrix stores a floating
point number (4 bytes), then the required space in memory for the algorithm to run would
be 4 * (20010) = 409, 600 Exabytes, or around 409 trillion gigabytes. Even aligning just 5
of these sequences takes over 1000 GB. Thus we need a more efficient method for aligning
multiple sequences!

A
VSN _ S
, / _ S NA _
A g _ _ _AS
Vs
/’
N
#
d
’/ // /,f
s
/‘ /’i -
- s s
Vv S N S

Start

Figure 1: Example of a 3D Dynamic Programming Matrix
3 Progressive Alignment

3.1 Algorithm

One method to efficiently construct a multiple alignment is the progressive alignment
algorithm. This method approximates the full multiple alignment by iteratively aligning
related sequences first, rather than aligning all the sequences at once. This involves a few
steps before aligning;:

1. Pairwise align each sequence to every other sequence, and build a distance matrix
for the sequences

2. Build a guide tree from this distance matrix
3. Build a profile for each internal node of the tree

4. Starting from the leaves, align siblings together until all sequences are included

3.2 Time/Memory Complexity

The runtime complexity of the first step is O(N?L?), since there are (O(N?)) pairwise align-
ments, each taking O(L?) time (using any of the DP algorithms for pairwise alignment).
Building a tree from the calculated distance matrix takes O(N?) time (see the note on Phy-
logenies for a detailed explanation). Building a profile for each internal node takes O(N L?),
since there are N —1 internal nodes. Compared to the O(LY) runtime of a full DP algorithm,
the progressive alignment is much more efficient.

Figure 2: Example guide tree for a progressive alignment of 5 sequences

However, this alignment method serves as an approzimation of the full multi-dimensional
DP alignment, and will not always converge to the optimal multiple alignment (which a full
DP algorithm will always find). One reason is that final multiple alignment is dependent on
the order of progressive alignment, where errors in early alignments are propagated through
the iterative process. The final alignment can serve as a lower bound for the actual solution
though, and can be improved using various techniques for iterative refinement.

3.3 Sequence Profiles

For the internal nodes in the guide tree, we need to build a sequence profile, which is
a probabilistic model which describes a sequence motif. We can represent this model as a
Position Weight Matrix (PWM), which stores the probability of each nucleotide (or
amino acid) at each position. A PWM can generate sequences by randomly sampling a

A8 0 4 2 1 0
cio 6 2 2 0 0
G0 0 4 4 0 2
T/ 2 4 0 2 0 8

Table 1: Example of a Position Weight Matrix

residue at each position from the probability distribution in each column. We can also
determine the probability P(X|6) that a sequence X was generated by a PWN 6:

H%(Xi)

i€X

C

L IC-

©o

Figure 3: Sequence logo of PWM in Table 1

where ¢;(X;) is the probability of residue X; at column 7, which is given in the PWM. For
example, the probability of the sequence ACAAAT would be .8 % .6 .4%.2%x1x.8~~ .03

If we assume a null model, for example a uniform distribution at every position, than we can
also calculate the posterior probability P(0|X), e.g. the probability that that the sequence
X was produced by the model 6, using Bayes Theorem (see the note on Probability).

We can build a PWM from the columns of the alignment by counting the frequency of
each nucleotide at each position and normalizing to get a probability distribution for each
column. What if a nucleotide has a frequency of 07 Then when we calculate the likelihood
of a sequence with that particular nucleotide at that position, ¢;(X;) = 0, and the above
product is 0! Thus we need to introduce Laplace pseudocounts. Now when calculating the
frequencies of each nucleotide, we add 1 to each value in the frequency table. For example,

we can include pseudocounts for the PWM above:

4/5 0 2/5 1/5 1 0

0 3/6 1/5 1/5 0 0

0 0 2/5 2/5 0 1/5

HQOQ»

1/5 2/5 0 1/5 0 4/5

Before pseudocounts

4 Scoring Schemes

4.1 Column Scores

Similar to pairwise alignments, there are various scoring schemes for multiple alignments.
These schemes can be used to compare and evaluated a multiple alignment from an algorithm
like progressive alignment to a gold-standard, often a structural alignment.

One metric that is commonly used is the Sum of Pairs Score (SPS), which evaluates a
single column in an MSA. The SPS metric takes the sum of the substitution score over every

A

C
G
T

5/9 1/9 3/9 2/9 6/9 1/9
1/9 4/9 2/9 2/9 1/9 1/9
1/9 1/9 3/9 3/9 1/9 2/9
2/9 3/9 1/9 2/9 1/9 5/9

After adding pseudocounts

combination of sequences:
§ =22 Qi)
i j>i

where Q(x;, z;) is the substitution score (from a BLOSUM matrix for example), and z; is the
residue for the column for sequence . One issue with the SPS score is that over-represented
clades in a tree tend to dominate. The reason for this is every pair of sequences is compared,
so if many sequences are similar and froma. single clade, the they would comprise the
majority of the SPS score. Another metric is the Total Column Score (TCS), which
counts the number of columns in the MSA which are completely accurate.

4.2 Consensus Alignment

Consensus alignments combine multiple alignments from different algorithms (progressive
alignment, structural alignment, etc.) to form a final MSA. Some methods for consensus mul-
tiple alignment involve calculating the posterior probability of each residue pair. These
methods are similar to the McCaskill algorithm from RNA folding, in that they compute
a partition function over an ensemble of multiple alignments, and calculate the probability
of a pair of residues by looking at all MSAs which include that pair of residues (similar to
a partition function over an ensemble of RNA structures, and the probability of two bases
being paired).

Once the posterior probabilities are calculated, some algorithms use expectation maxi-
mization to maximize the SPS score over the MSA. Others find the closest related residues
and start aligning those first (called sequence annealing). Lastly, some algorithms use
these posterior probabilities to avoid comparing all N? sequence pairs, instead only making
O(N log N) comparisons to ensure that the MSA contains all the sequences and is connected.

5 Other Alignment methods

Progressive alignments are used widely in various bioinformatic tools (CLUSTAL, MUSCLE,
MAFFT), as are consensus methods (ProbCons, FSA). Aside from these methods, there are
also structural alignment methods, which align proteins using 3D structure. Often these
methods minimize the root-mean-squared deviation (RMSD) between two structures
to determine the optimal alignment. Other algorithms are used to align RNA while si-
multaneously folding the RNA sequences (DynAlign, StemLoc, LocaRNA). Lastly, there are
tools for aligning whole genomes and sequences with large rearrangements like bacterial /viral

genomes (MAUVE, MAVID).

6 Summary

Often times computing the optimal alignment using dynammic programming can be in-
feasible, so several alignment approaches have been developed that use heuristics to direct
alignment. For example progressive alignment uses the relationship between sequences to
efficiently build the MSA. These tools allow us to study phylogenies and sequence relation-
ships, as well as build sequence motif profiles as probabilistic models.

