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1 Introduction

Often, multiple alignments are constructed with the ultimate goal of studying the relation-
ships between sequences (and species), which we can visualize using Phylogenetic trees.
In this note, we will explore methods for building and analyzing phylogenies, as well as the
Jukes-Cantor model for estimating evolution distance.

2 fUn WiTh GrApHs

Phylogenetic trees (or dendograms, or cladograms), like all trees, are special types of graphs.
Graphs are a set of vertices (or nodes), connected by edges. Edges can be directed or
undirected, as well as labeled with weights or distances. The node degree is the number
of neighbors of the node (for directed graphs, each node has an in-degree and out-degree).
Graphs can be connected, if there is a path between any two vertices. They can also be

Figure 1: Example of an undirected cyclic graph with 6 vertices

complete, if there is an edge between every pair of vertices. Lastly, graphs can be acyclic
if there are no cycles (a path from a vertex to itself).

A tree is a special type of graph that is connected and acyclic. Trees are also minimally
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connected, with exactly |V | − 1 edges, where |V | is the number of vertices. A binary tree
is a tree where all nodes are internal (degree 3), leaves (degree 1), or the root (degree 2).
Phylogenetic trees had edge labels (representing evolutionary distances), and node labels
(gene or taxons). Lastly, a root node is specified, which implies directionality in the graph
(edges are directed away from the root).

3 Phylogenetic Trees

Phylogenetic trees are often rooted such that the tree is directed. In phylogenies of taxons,
the root represents a common ancestor of the leaf nodes, and in phylogenies of genes, the
root node represents the ancestral sequence. Outgroups, species which are distantly
related to the rest of the tree, can be included to root the tree. Often times the root can be
ambiguous, e.g in the tree of life, there is no outgroup to determine the root.

Figure 2: Tree of life with a possible root (between Bacteria and Archeae)

Lastly, trees can be ultrametric, where the leaf nodes are the same distance from the root.
One example of an ultrametric tree is from the coalescent process, which models running
time backwards in the Wright Fisher Model (see the note on Probability). Non-ultrametric
trees can result from data where the leaf nodes are not contemporaneous (e.g. sequencing
ancient DNA). Branch lengths can also vary between contemporaneous taxa, where factors
like metabolic rate and mutation rate vary.
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Figure 3: Ultrametric vs Non-ultrametric trees

4 Algorithms for Phylogenetic Reconstruction

Now let’s look at a few methods to construct phylogenetic trees from multiple alignments.
In general, the substitutions (and in some cases the indels) in the MSA are used to build
and evaluate a tree.

4.1 Parsimony

Parsimony trees group taxa such that the number of substitutions is minimized. These
trees are the simplest type of phylogenetic trees, and can be solved using various optimization
methods (like the branch-and-bound method). However, this method ignores different
types of substitutions, treating them all the same. It also does not account for back-
substitutions, where a mutation reverts a previous mutation (and the final nucleotide
appears unchanged).

4.2 Distance Matrix

We can also construct a phylogeny (or any distance tree) from a distance matrix, which
contains the “distance” between each taxon or gene. This works well if distances are additive
(not the case with back-substitutions!). This method can be a quick approximation for
likelihood methods (which we will explore later), but can be prone to certain types of error.

One type of error is long branch attraction. When two species are on long branches in a
phylogenetic tree, there can be chance similarities due to a long time to accumulate sequence
or morphological changes. This can cause distantly related species to appear more related!
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4.2.1 UPGMA algorithm

Using a multiple alignment, we can build a matrix of pairwise distances, and construct an
ultrametric tree using the UPGMA algorithm.

The general idea of the algorithm is:

1. Pick the closest two nodes, and group them under an ancestral node

2. The distance between ancestral nodes is the average over the distances between all
descendants

3. Repeat until all nodes are included

We can describe the UPGMA algorithm in pseudo-code:

Algorithm 1 UPGMA algorithm
Input: Distance matrix, Dij

Let N be a set of nodes
Let C(i) be the set of descendants of node i
for nodes ∈ N do

C(i)← {i}
end for
while N contains nodes do

(i, j)← arg mini,j Di,j

Create node k
C(k)← C(i)

⋃
C(j)

for nodes ∈ N do
Dkn ← 〈Dxy〉x∈C(k),y∈C(n)

end for
end while

4.2.2 Runtime Complexity of UPGMA

Looking at the pseudocode, the initialization takes O(N − 1) steps. The while loop runs in
O(N) time, and in each loop, we find the smallest item in the matrix D, which naively takes
O(N2) time (though this can be reduced by storing the smallest value). Thus the while loop
takes O(N3) time, which is the overall runtime of the algorithm. The memory complexity is
simply O(N2), since the algorithm stores the distance matrix in memory.
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4.3 Phylogenetic Likelihood

Phylogenetic likelihood methods for tree construction find the tree with the most likely
substitutions. These trees are more realistic than those from distance matrix or parsimony
approaches, but they can be much slower, as they evaluate the likelihood of many tree
topologies.

Figure 4: Example of a phylogenetic tree

4.3.1 Likelihood

We can calculate the likelihood of a tree using the probability distribution over the root
P (x), and the conditional distribution of a node, P (w|x), the probability of a node given its
parent. Thus for the tree in Figure 4, the likelihood would be:

L0 = P (x) · P (v|x) · P (u|v) · P (a|u) · P (b|u) · P (c|v) · P (w|x) · P (d|w) · P (e|w)

However, we don’t knnow the ancestral states (in this case nodes u, v, w, and x). Thus we
can sum over all possible states of these nodes.

L =
∑
u

∑
v

∑
w

∑
x

L0

Since there are order O(N) internal nodes in a tree, iterating through all possible states for
all ancestral nodes would take O(AN) times (A is the alphabet size, e.g. 4 for nucleotide
sequences).

We can use dynamic programming to reduce the runtime to O(A2N)! The idea is to compute
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the likehood of each subtree, and recursively calculate the final likelihood. This is equivalent
to rearranging the likelihood sum:

∑
x

P (x)

(∑
v

P (v|x)

(∑
u

P (u|v) · P (a|u) · P (b|u)

)
P (x|v)

)(∑
w

P (w|x) · P (d|w) · P (e|w)

)

Now, each sum represents sum in parentheses represents a partial solution P (subtree|root).

4.3.2 Confidence estimates

Often phylogenies include the confidence of branches, which can be determined directly from
likelihood methods (like MCMC sampling), or by bootstrapping. Bootstrapping involves
sampling a random set of columns from the multiple alignment (with replacement), and
building a tree from just that subset of data. We can repeat this many times, and find the
percent of trees which include a certain branch in their topology.

4.3.3 Other methods

Other algorithms have been developed to build phylogenies from multiple alignments, which
approximate likelihood methods. Neighbor-joining is an algorithm that extends the ideas
from UPGMA, but allows for siblings to be non-equidistant from the parent. Thus, neighbor-
joining methods can also produce non-ultrametric trees. Weighted neighbor-joining im-
proves on normal neighbor-joining by correcting for long-branch estimation error. Quartet-
puzzling algorithms look at sets of 4 nodes in the tree, and finds the best arrangement for
each local set of 4, as opposed to comparing pairs of nodes

Lastly, MCMC sampling is an important algorithm for approximating the likelihood of a
tree. This method stochastically generates trees from the underlying probability distribu-
tion of trees, which (after enough trees have been generated) can be used to calculate the
probabilities of each tree. This method is slow, but the longer it runs, the more accurate an
approximation to the maximum likelihood tree it can provide.

5 Jukes Cantor Model

The Jukes Cantor model was developed at Berkeley in 1969 as a method to estimate evolu-
tionary distances between sequences. We’ll derive the equation for the distance estimate in
this section.

Let’s assume in a sequence, there are randomly timed replacement events, where a nucleotide
is replaced by any of the 4 nucleotides with uniform probability (so there is a 1/4 probability
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of the nucleotide remaining the same). We can model these replacements with a Poisson
distribution, with a mean of RT , where R is the rate of replacement events, and T is time.
Note: the rate of substitutions is λ = 3

4
R.

Now let X(t) be the state of the process at time t, and Q(t) be the probability that there are
no replacements from time 0 to t. Since R is the rate of replacement events, we can derive
an expression for Q(t):

dQ

dt
= −RQ (1)

Since Q(0) = 1, we can solve the differential equation:

Q(t) = exp(−Rt) (2)

Now let’s find the probability that the state of the process at time t is the same as the initial
state, i.e. P (X (t) = X (0)). If the state of the process remains the same, then there were
EITHER no replacement events in time t OR the replacements did not change the nucleotide
(with probability 1/4):

P (X (t) = X (0)) = Q (t) +
1−Q (t)

4
(3)

We can further simplify this equation:

P (X (t) = X (0)) =
1

4
(1 + 3 exp (−Rt)) (4)

Now let’s look at a pairwise alignment of two sequences with length L. Assume the se-
quences are separated by evolutionary distance t. If we assume that each nucleotide is
independent, then we can find the expected number of matches M (same nucleotide in
both sequences at a position):

M = L× 1

4
(1 + 3 exp (−Rt)) (5)

But we are trying to find an equation to estimate the evolutionary distance t! Let’s rearrange
equation (5) to find t:

t = − 1

R
log

(
1

3

(
4
M

L
− 1

))
(6)

Lastly, we can calibrate time such that the rate of substitutions is 1, i.e. λ = 1, which implies
that the rate of replacement R = 4

3
. We can plug in this rate to derive the full Jukes-Cantor

distance estimate:

t = −3

4
log

(
4

3

M

L
− 1

3

)
(7)

We can also rewrite this equation in terms of the number of mismatches instead of matches,
q = 1−M/L:

t = −3

4
log

(
1− 4

3
q

)
(8)
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6 Virus design

One problem in bioinformatics is designing therapeutic viruses for various purposes like
delivering genetic material or lysing specific cells. These designed viruses need to have a
few properties, like safety (not involved in disease), stability, and ease of transformation.
Another property that is important, related to evolution, is the rate of nonsynonymous
mutations. These mutations change the amino acid sequence of the expressed protein,
unlike synonymous mutations, which are silent, and cause no change in the overall protein
sequence. One common metric to calculate is the Ka/Ks ratio, or the dN/ds ratio. This
is the ratio of nonsynonymous to synonymous mutations, and can reveal information about
the selective pressures driving evolution of the gene (or in this case, viral genome). There
are ranges of values for the ratio:

1. Ka/Ks > 1: diversifying selection, the case in pathogens undergoing immune system
evasion

2. Ka/Ks ≈ 1: neutral selection

3. Ka/Ks < 1: purifying selection, such as in the case of housekeeping genes

By measuring the Ka/Ks ratio of a virus, we can study the selective evolutionary pressures
that a virus is undergoing, and better understand how viruses evolve.

7 Summary

Phylogenetic trees are an important tool to understand the evolutionary relationships be-
tween taxa or sequences. We can used properties of graphs to study phylogenies, and re-
construct trees using various methods. We can also use probabilistic models like the Jukes-
Cantor model to estimate the evolutionary distance between sequences. Lastly, evolutionary
models can be useful in the study of viruses, which undergo selective pressures that drive
genetic change.
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