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1 Introduction

Random processes are present in all branches of biology, from population genetics and
ecology to molecular simulations and systems biology. How can we study processes that are
inherently random (or seem to be random)? We can build probabilistic models, and describe
random systems using probability theory. In this note, we will cover basic definitions of
core probability theory concepts (like random variables, distributions, Bayes’ Theorem), as
well as some probabilistic models used in biology.

2 Probability Theory

2.1 Basic Definitions

A random variable is a variable that has multiple possible values, each with an associated
probability. Given a random variable (often abbreviated RV') x, which can take on a set of
values X, we can define the probability of a value a € X to be P(z = a), which is often just
written as P(z) as a shorthand.

A probability distribution is the probability of each possible value an RV can take. There
are two types of distributions, discrete, with a finite set or countably infinite (i.e. integers)
set of values, and continuous, with an (uncountable) infinite set of values, like all real
numbers. In both scenarios, the probability of all possible values must add up to 1 (the
normalization constraint):
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Along with a PDF, continuous functions also have a cumulative density function (CDF),
which describes the probability of an outcome less than a given value:
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2.2 Conditional, Joint, and Marginal

A joint probability, P(z,y) between two variables x and y, defines the distribution over
the combinations of possible values for both RVs. The marginal distribution can be found
by “summing out” an RV from the joint distribution, taking the sum over all possible values

of the RV:
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The conditional probability, P(z|y), is the probability of an event x given that y has

occurred:
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The normalization constraints still hold for conditional and joint distributions:
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Joint distributions can also be continious, and the above formulas hold (just replace the
sums with integrals).

2.3 Independence

Two random variables are independent if the distribution of one variable remains the same
given an outcome from the other variable, or as an equation:

P(z|y) = P(z) if x,y independent
If two RVs are independent, then the joint probability P(z,y) is just the product P(z)P(y).

As a biological example, pick any two random positions from a genome. The nucleotide for
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each position is assumed to be independent, because, for example, the probability of selecting
an “A” at one position does not change depending on what base is at the other position.
However, selecting adjacent nucleotides in a genome is not independent, since some pairs of
nucleotides are more common than others.

If two random variables are independent and have the same probability distribution, we call
them IIDs, or independent and identically distributed random variables. An example of a
sequence of IIDs is rolling N dice, or even rolling the same die N times. This is also an
example of a uniform 11D, where the probability of any outcome is the same (the probability
distribution is flat).

2.4 Expectation

The expectation of a distribution, or the expected value E|x], is the sum of all the possible
outcomes, weighted by their probabilities:

Elz] =) xP(x)
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The variance of the distribution can be found with the equation:

2.5 Probability Distributions
An example of a discrete distribution is the Binomial distribution, which models the

probability of k successes out of n trials, where the probability of a success is p. The
distribution can be described by:

F(kn,p) = P(K = k) = (Z)pk(l -

(1) = m

The Gaussian or Normal distribution is an example of a continuous distribution, with a
PDF of the general form:

where

1
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where p is the mean (or center of the distribution), and o is the standard deviation.



Another example of a continuous distribution is the Extreme Value (Gumbel) Distri-
bution or EVD. This distribution models the probability of the max (or min) value of N
RVs of another distribution. For example, when aligning two random proteins, many align-
ments are possible, but we are interested in the best alignment. Thus the EVD describes the
distribution of the best alignments between two random proteins.

We can extend this example by looking at a protein homology search. For each protein in
the database, we can take the best alignment score with our query, and create a distribution
of the best alignment scores across the database. We can then model this distribution of
alignments scores as an EVD, and calculate the probability (or p value) of a given score
using the CDF of the distribution.

2.6 Bayes’ Theorem

Bayes’ theorem is used widely in statistical inference, and describes the probability of an
event given prior knowledge:

Ply,xz) _ P(ylz)P(x)
P(y) P(y)

A common interpretation is that x is the model that describes y, the data. Thus we cal-
culate the likelihood of the data given a model, P(y|z), and weight the likelihood by the
prior probability P(z). This is normalized by the evidence probability P(y) to yield the
posterior probability, P(z|y), which is the probability of the model given all the evidence.

P(zly) =

2.7 EM and K-means

Given a set of points, one common task is to cluster the points into groups. From a statistical
viewpoint, we can assume that each cluster of points is from a distinct distribution, which
are added up to form the full set of points, or the mixture model.

We can then build a model ¢ which represents the different clusters and assign each point y;
to a cluster x;. The likelihood of the model is then given by P(z,y|6), which we can weight
by the prior probability P(#) (if we have no prior knowledge of the models, we can just use
a uniform prior). Thus clustering the set of points involves just calculating

argmax, P, 0]y)
which finds the model and assignments which maximize the posterior probability.

One very common algorithm for clustering is the K-means algorithm, which involves assigning
N points to k clusters:



1. Start by randomly assigning all the points to & clusters
2. Find the centroid of each cluster
3. Assign each point to the nearest centroid

4. repeat steps 2-3 until the assignments converge

The K-means algorithm is a type of Expectation Maximization or EM algorithm. EM
algorithms involves alternating between an expectation (assigning points to the nearest cen-
troid), and maximization (calculating the centroids) steps, run until convergence. The algo-
rithm is used to fit models of the form P(x,y|f), where x and y are the hidden and observed
data, and 6 represents the model parameters we are trying to fit.

3 Random Processes in Biology

Now we will discuss a few random processes and probabilistic models used in various biolog-
ical problems.

3.1 Markov Process

3.1.1 Formulation

A Markov process describes a stochastic sequence of states, where the probability of encoun-
tering a state only depends on the previous state (called the Markov Property). As an
equation:

P(xps1|Tn, Tno1, Tnooy...) = P(xpi1|xy)

In other words, given the present state, the probability of the future and past states are
independent.

If there are N states, we can then define the probability of transitioning from state 7 to state
J as Q;j, where @) is the transition matrix. We also define the probability of being in state
j at timestep n+ 1 as p" ™

;. ', which can be calculated by summing over the previous possible
states at timestep n:

n+1 n
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Figure 1: Markov Chain of a 4nt DNA sequence

3.1.2 Examples

One example of a Markov process is a random walk, a simulation of a Markov process over
integers. Each state in the Markov chain is an integer, connected to the previous and next
integer with some probability. By simulating multiple timesteps of the Markov chain, we
can create a random walk along the chain.

One example of this is the Birth-Death process. This Markov process over the set of
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Figure 2: Diagram of a birth-death process

integers is parametrized by two rates: the birth rate (\,) and the death rate (u,). At each
timestep n, the two rates dictate the probability of a birth and death, moving between states
which represent the current population size. We can also add in the concept of immigration,
which increases the population like a birth.

Birth-death processes are used in the Unified Neutral theory of Biodiversity, a model
developed by Hubbell (2001) that describes species diversity in ecological communities. This
model uses nested birth-death processes to describe separate mainland (slow timescale) and
island (fast timescale) populations, with immigration between them, to accurately predict
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Figure 3: An example hidden Markov model (hmm)

species distributions in ecological systems.

The concept of a birth-death process is also used in the tkf91 model. This model describes
sequence evolution, including indels (insertions and deletions of bases), which is similar to
the idea of immigration in a birth-death process.

3.1.3 Hidden Markov Models

Hidden Markov Models (or HMMs), are a type of Markov model, where each state also emits
an observable value. HMMs can describe processes where there is an underlying hidden state,
but we can only observe a sequence of emissions, which we can use to reconstruct the hidden
states. One example of this is classifying GC-rich regions in a DNA sequence. The probability
of outputting a G or C in a GC-rich region is different than in AT-rich regions, but given
a DNA sequence we can’t tell which positions are in GC or AT-rich regions. These region
assignments are the hidden states, while the DNA sequence is the sequence of observable
states.

HMMs are represented by a graphical model, also called a Bayes net or factor graph.
Bayesian networks describe the conditional relationships between multiple random variables
using a directed graph.

3.2 Hardy-Weinberg equilibrium

The Hardy-Weinberg principle states that under ideal conditions, the frequency of alleles in
a population will remain constant in equilibrium. For example, for a gene with two alleles
(A, a), P(A) = p, and P(a) = q, after a single generation, we get the following genotype
frequencies:

P(AA) = p*, P(Aa) = 2pq, P(aa) = ¢*



Since p and ¢ must sum up to 1, we get:

P(Aa)
2

P(A) = P(AA) + =plp+q =p

This principle holds under certain conditions:

1. The genome is diploid
2. There is an infinite population
3. Mating is random (no selection)

4. The gene locus is biallelic

3.3 Wright-Fisher model

The Wright-Fisher model describes the number of alleles in a population over time. Given
a gene with 2 alleles (A, a): in generation ¢, assume there are X; copies of allele A in the
population of size N. The Wright-Fisher model describes the number of copies of A in
generation ¢t + 1 to follow a binomial distribution:
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where 7 is the number of copies of allele A in generation ¢ and j is the number of copies in
generation t + 1. One important property of the model is the fixation probability, where
the probability of allele A fixing in the population (becoming the only allele, or 2N copies
in the population), or disappearing altogether, is:

0

X
P(X; absorbs at 2N) = N

X,
P(X; absorbs at 0) =1 — ﬁ

where X is the initial number of copies of allele A.

3.4 Coalescent process

The Wright-Fisher model can be used to analyze how populations change through time.
But what if we want to model how a current population developed? We can essentially run
Wright-Fisher backwards in time! This is the idea behind the Coalescent process, which
can be used to model the probability of two individuals in a population sharing a common
ancestor.



4 Summary

Random processes appear frequently in biological problems, and one method for modelling
them in computational biology is with probabilistic models. Using these models, we can
make statistical inferences, characterize the behavior of stochastic processes, and analyze
randomness in biological systems.



